Cortical control of a whisking central pattern generator.
نویسندگان
چکیده
Whether the motor cortex regulates voluntary movements by generating the motor pattern directly or by acting through subcortical central pattern generators (CPGs) remains a central question in motor control. Using the rat whisker system, an important model system of mammalian motor control, we develop an anesthetized preparation to investigate the interaction between the motor cortex and a whisking CPG. Using this model we investigate the involvement of a serotonergic component of the whisking CPG in determining whisking kinematics and the mechanisms through which drive from the CPG is converted into movements by vibrissa motor units. Consistent with an action of the vibrissa motor cortex (vMCx) on a subcortical CPG, the frequency of whisking evoked by intracortical microstimulation (ICMS) of vMCx differed significantly from the stimulation frequency, whereas whisking onset latencies correlated negatively with stimulation intensity. Further, ICMS-evoked whisking was suppressed by a serotonin receptor antagonist, supporting previous findings that the whisking CPG contains a significant serotonergic component. The amplitude of ICMS-evoked whisking was correlated with the number of active motor units-isolated from vibrissal EMGs or recorded directly from vibrissa motoneurons-and their activity level. In addition, whisking frequency was correlated with the firing rate of these motoneurons. These findings support the hypothesis that vMCx regulates whisking through its actions on a subcortical CPG.
منابع مشابه
What makes whiskers shake? Focus on "Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat".
As one researcher once put it—“to beat the night with sticks” (D. Kleinfeld, personal communication)—might be only option for a small mammal to find its way through the dark holes it is living in. Rats employ such a strategy and explore their environment by fast rhythmic whisker movements. Whisking is generated by a highly specialized (Dörfl 1982) fast-muscle-fiber-dominated (Jin et al. 2004) m...
متن کاملSpectral analysis of whisking output via optogenetic modulation of vibrissa cortex in rat
Whisking motor output in awake and freely moving rat is investigated with optogenetic excitation/inhibition of the vibrissae motor cortex (vMCx) layer V. The goal of the study is to establish the direct causal relationship between the cortical activity and the whisking output using optical stimulation, excitatory or inhibitory, with different frequencies. Progression and reduction of the whiski...
متن کاملWhisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator.
Even in the absence of explicit stimulation, rats emit patterns of rhythmic whisking movements. Because of their stereotyped nature and their persistence after sensory denervation and cortical ablation, whisking movements have been assumed to reflect the output of a central pattern generator (CPG). However, identification of a movement pattern as the product of a CPG requires evidence that its ...
متن کاملCortical barrel field ablation and unconditioned whisking kinematics.
The effects of "barrel cortex" ablation upon the biometrics of "exploratory" whisking were examined in three head-fixed rats which had previously sustained unilateral ablation of the left cortical "barrel field" under electrophysiological control. Unconditioned movements of a pair of bilaterally homologous whiskers (C-1, Right, Left) were monitored, optoelectronically, with other whiskers prese...
متن کاملSerotonin and Whisking
Rhythmic whisker movements, called "whisking," are produced by a brainstem central pattern generator (CPG) that uses serotonin to induce periodic firing in facial motorneurons. During active touch, motor cortex could regulate whisking frequency by controlling the rate of firing of the serotonergic neurons.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2006